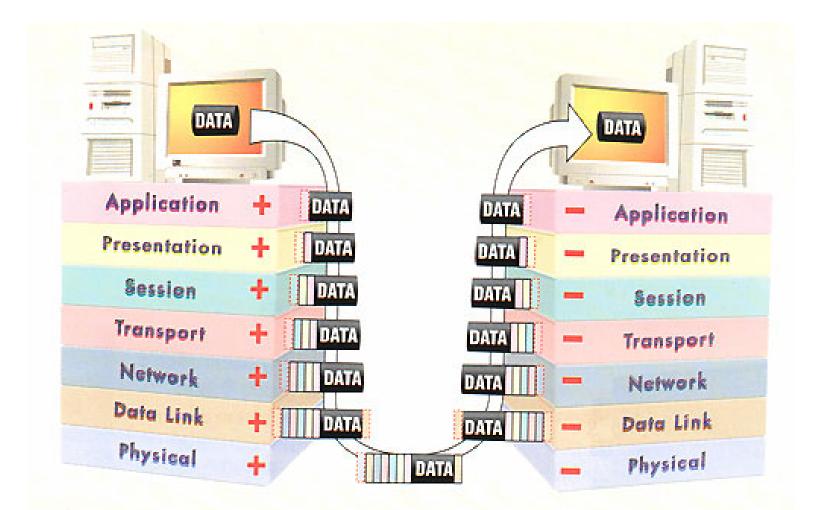
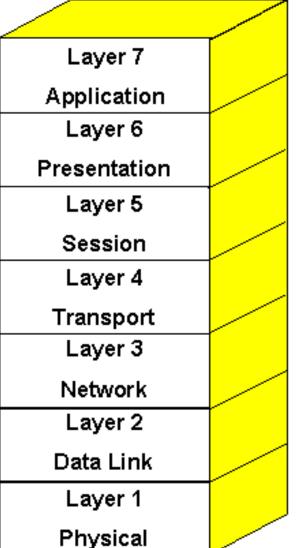
Basic Knowledge for Advance Network Troubleshooting #1

By Warin Loasakul (Fordot)

Agenda


- 1. OSI 7 Layer & Beyond the 7th layer
- 2. Ethereal: Basic usage introduction
- 3. Protocol Detail


OSI 7 Layer

Data Flow and Header

Meaning

Applications and application interfaces for OSI networks. Provides access to lower layer functions and services.

Negotiates syntactic representations and performs data transformations, e.g. compression and code conversion.

Coordinates connection and interaction between applications, establishes dialogue, manages and synchronizes direction of data flow.

Ensures end-to-end data transfer and integrity across the network. Assembles packets for routing by Layer 3.

Routes and relays data units across a network of nodes. Manages flow control and call establishment procedures.

Transfers data units from one network node to another over transmission circuit. Ensures data integrity between nodes.

Delimits and encodes the bits onto the physical medium. Defines electrical, mechanical and procedural formats.

Layering (Beyond the 7th layer)

DoD Stack (1970)

Process Layer	Telnet, FTP, e-mail, etc
Host to Host Layer	TCP, UDP
Internet Layer	IP, ICMP, IGMP
Network Access	Device driver and interface card
Layer	

OSI Model (1978)

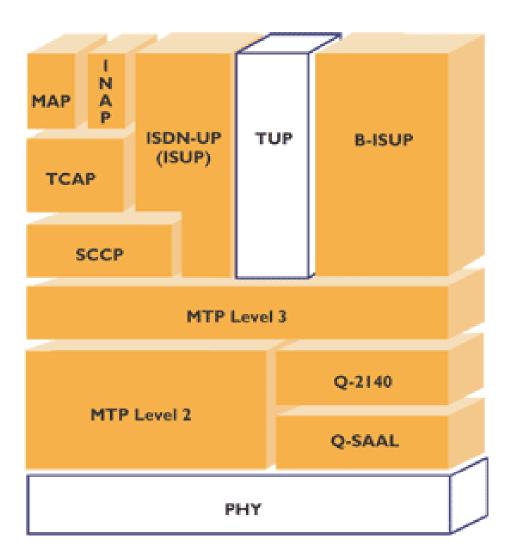
Layer 7	
Application	
Layer 6	
Presentation	
Layer 5	
Session	
Layer 4	
Transport	
Layer 3	
Network	
Layer 2	
Data Link	
Layer 1	
Physical	

Applications and application interfaces for OSI networks. Provides access to lower layer functions and services.

Negotiates syntactic representations and performs data transformations, e.g. compression and code conversion.

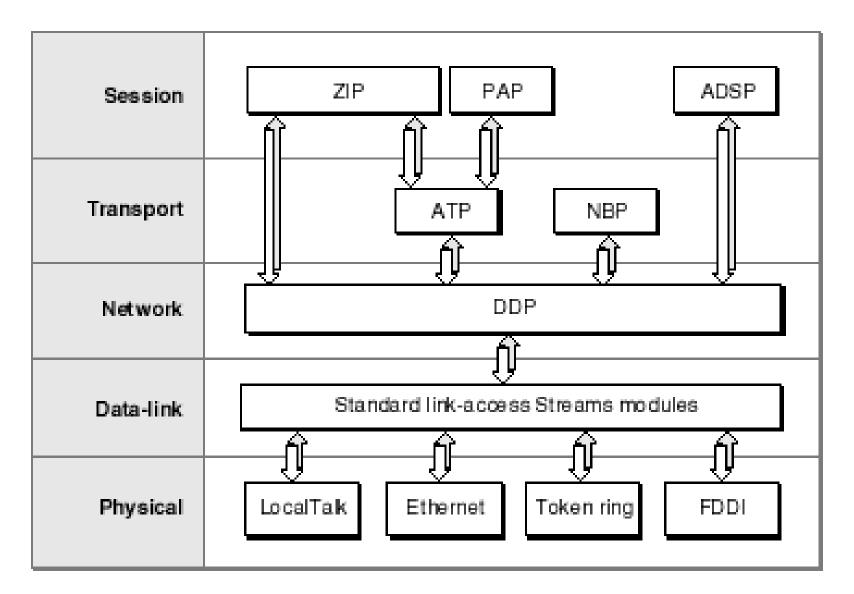
Coordinates connection and interaction between applications, establishes dialogue, manages and synchronizes direction of data flow.

Ensures end-to-end data transfer and integrity across the network. Assembles packets for routing by Layer 3.

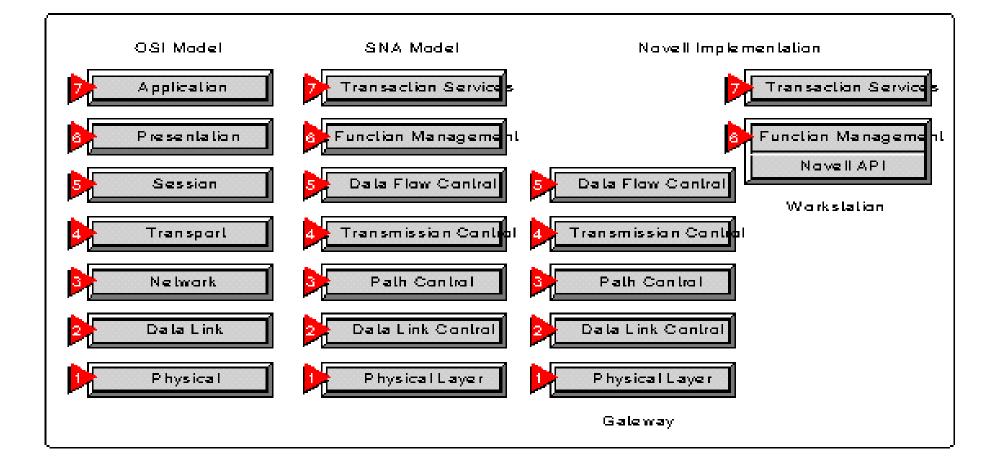

Routes and relays data units across a network of nodes. Manages flow control and call establishment procedures.

Transfers data units from one network node to another over transmission circuit. Ensures data integrity between nodes.

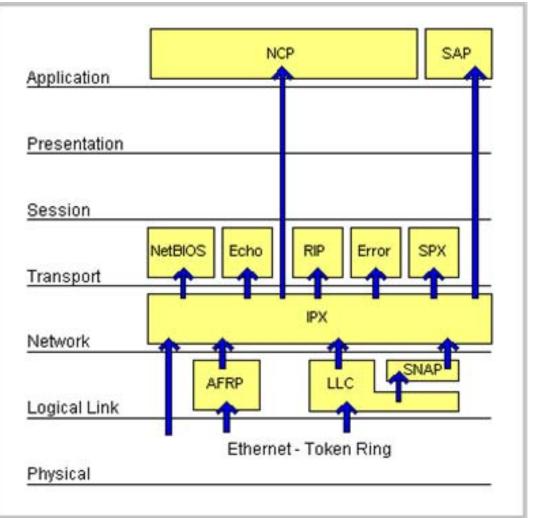
Delimits and encodes the bits onto the physical medium. Defines electrical, mechanical and procedural formats.


Thai**Admin**

SS7 Stack (1981)



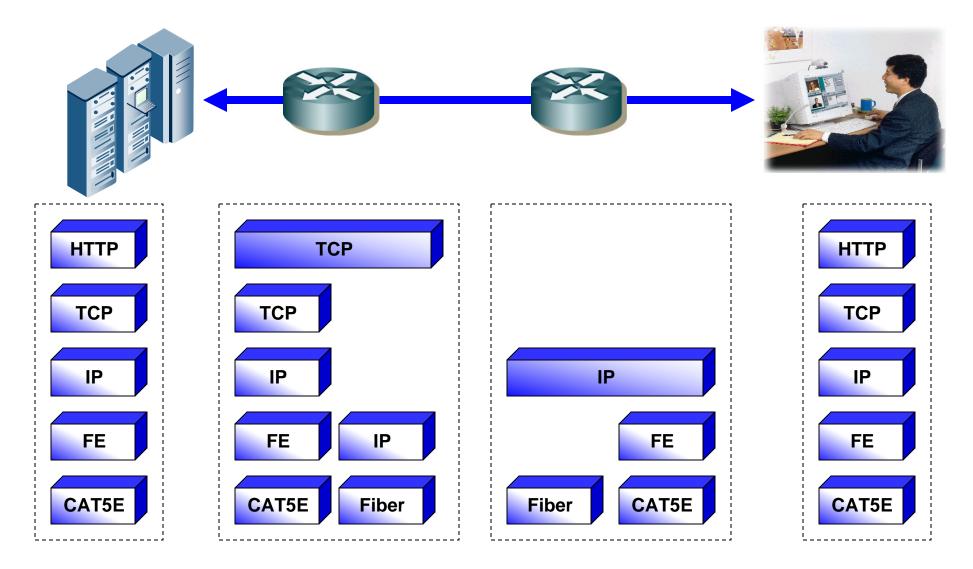
Apple Talk Stack (1984)



SNA Stack (1974)

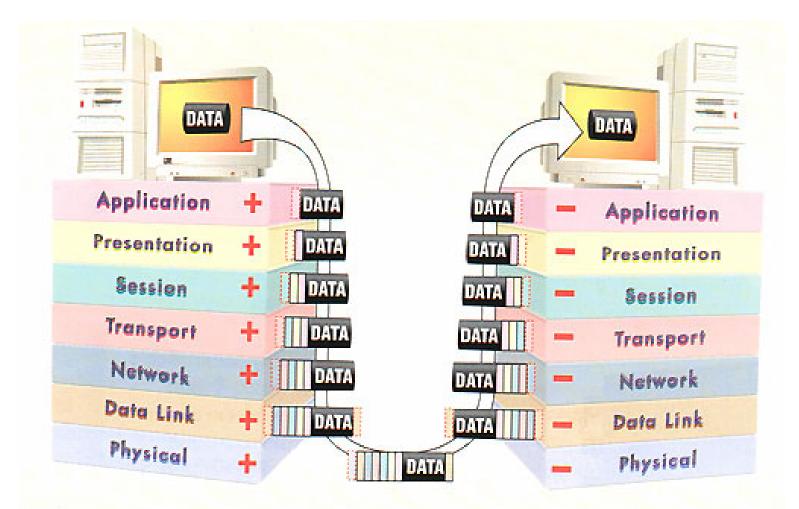
Novel Protocol Suite

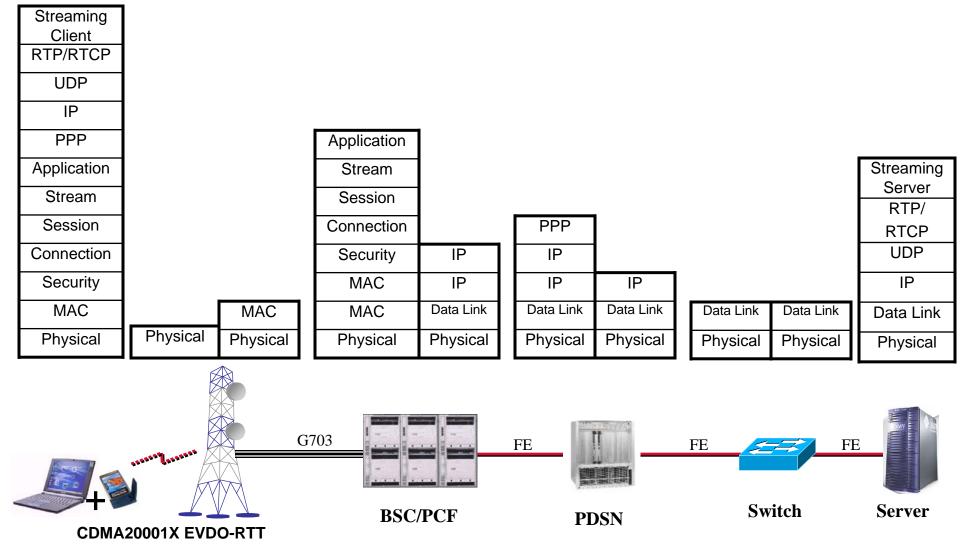
Novell Protocol Suite



Layer	Misc. Examples	TCP/IP (DoD) (1970)	SS7 (1981)	AppleTalk (1984)	OSI suite (1978)	IPX suite (1987)	SNA (1974)	UMTS (1998)
7 - Application	HL7, Modbus	HTTP, SMTP, SNMP, FTP, Telnet, NFS, NTP	ISUP, INAP, MAP, TUP, TCAP	AFP, PAP	FTAM, X.400, X.500, DAP		APPC	
6 - Presentation	TDI, ASCII, EBCDIC, MIDI, MPEG	XDR, SSL, TLS		AFP, PAP	۶. ۱			
5 - Session	Named Pipes, NetBIOS, SIP, SAP, SDP	Session establishment for TCP		ASP, ADSP, ZIP		NWLink	DLC?	
4 - Transport	NetBEUI	TCP, UDP, RTP, SCTP		ATP, NBP, AEP, RTMP	TP0, TP1, TP2, TP3, TP4	SPX, RIP		
3 - Network	NetBEUI, Q.931	IP, ICMP, IPsec, ARP, RIP, OSPF, BGP	MTP-3, SCCP	DDP	X.25 (PLP), CLNP	IPX		RRC (Radio Resourc e Control)
2 - Data Link	Ethernet, Token Ring, FDDI, PPP, HDLC, Q.921, Frame Relay, ATM, Fibre Channel		MTP-2	LocalTalk, TokenTalk, EtherTalk, Apple Remote Access, PPP	X.25 (LAPB), Token Bus	802.3 framing, Ethernet II framing	SDLC	MAC (Media Access Control)
1 - Physical	RS-232, V.35, V.34, Q.911, T1, E1, 10BASE-T, 100BASE-TX, ISDN, SONET, DSL		MTP-1	Localtalk on shielded, Localtalk on unshielded (PhoneNet)	X.25 (X.21bis, EIA/TIA-232, EIA/TIA-449, EIA-530, G.703)		Twinax	PHY (Physica I Layer)

Group Discussion


Discussion 1: Something wrong? Or not?


C mms_	_0626_1	succe	ss send	d small	l pictu	re.caj	p - Eth	ereal															BX
<u>Eile E</u> dit	t <u>V</u> iew	<u>Go</u>	apture	<u>A</u> nalyze	e <u>S</u> tatis	stics	Help																
	1 01			B	:	×	ð (5	 4 	ı 📫)	⊉			Ð	Q	11	•	i 1	b	* (D
Eilter:										▼ Exp	pressio	n <u>C</u> le	ar <u>A</u> pp	ly									
No	Time		ource				stinatio			Prote		Info											^
68	18.48		0.16.0					0.105		ICM								unread					
	18.562		0.16.1).16.			ICM			(ping)										
	18.562		0.16.8 0.16.0).16.3			ICM DNS			(ping) and qu			htm	obile	net.vr					
	18.800		0.8.3.					0.105		DNS								8.3.18					
	19.161		02.60.		167		92.9.			DNS	;	Stand	ard qu	uery	PTR 3	0.10	5 .1 0.1	in-addr					
	19.184		0.16.(0.8.3.				0.8.3	.18 0.105		TCP								Win=23					
	19.18		0.8.3. 0.16.0). 8. 3			TCP TCP								Ack=1 W Win=23					
	20.001		ortel_		0:80				ee-(fo					-	-			3:0e:c3					
	20.001		ortel		0:ae		anni		ee-(fo	r STP	•	Conf.	Root	= 32	768/0	0:05	:32:4	3:0e:c3	Cost	= 10	Port	$= 0 \times 80$	e6 🗸
∃ Fram					re. 10				red)		-												
Ether										st: 1	10.16	5.8.2	(00:0	5:47:	:02:1	e:b5)							
🗄 Inter														.16.8	3.2)								
🗉 Gener					tion	(CDM/	42000	A10	Unstru	cture	ed by	/te st	ream)										
PPP : Point				_																			
	rnet Pr				0.16.0	0.10	5 (10	.16.0	.105).	Dst:	10.	8.3.1	8 (10	. 8. 3.	18)								
Trans																: 0,	Ack:	0, Len	0				
		7.02	1 - 1 -				00.0		00.45														
	00 05 4 00 59 8								00 45 44 0a														<u>^</u>
0020 0	08 02 💈	20 00	88 81	L 00 (00 01	1 e8	7e 2	1 45	00 00	38	_												-
Frame (10			50 04 sage (59			- 10	00 6	0.0-	<u> </u>	1.5		*	4										
Generic Ro												[P·	276 D: 2	76 M 0)								
penerie Rot	arang encep	pociation	. (g. c), c	. 59005									270072										

Is this picture still can be trust? What you learn from University is Correct?

Discussion 2: Something wrong? Or not?

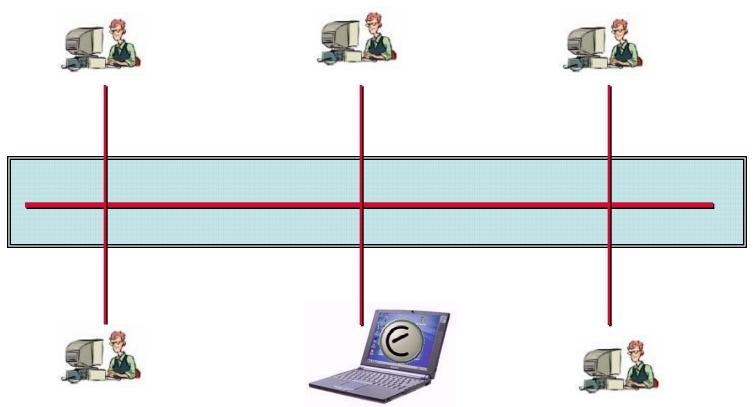
Network Analyzer Tools

Most Popular

- Ethereal Network Analyzer
- Sniffer Pro
- Snoop Analyzer Standard
- Network Stumbler Wireless Packet Sniffer
- IP Sniffer
- etc

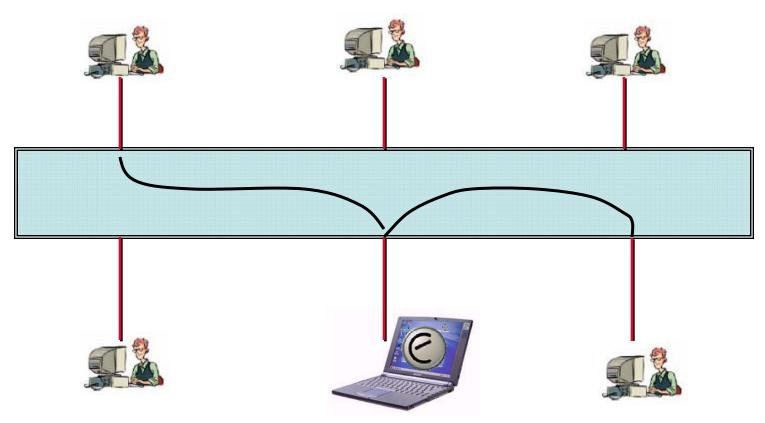
What is Ethereal

- Ethereal is a network packet analyzer
- A network packet analyzer will try to capture network packet
- And display captured data
- Ethereal is Open Source
- Available for UNIX and Windows.
- http://www.ethereal.com/

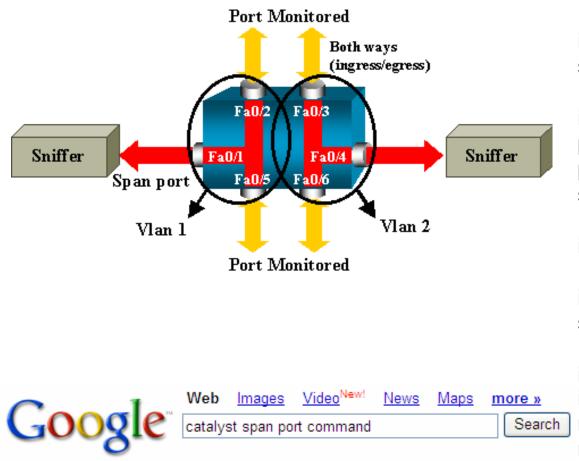


Introduction to Ethereal

- How to setup network for packet capturing
- How to capture message
- How to capture with filtering
- How to display message
- How to display with filtering


How to setup network for packet capturing

• Share Media Hub


Theiadmin How to setup network for packet capturing

• LAN Switching

Have to configure Mirror port in LAN Switch before capture packet

ThalAdmin Cisco span port command

. interface FastEthernet0/1 port monitor FastEthernet0/2 port monitor FastEthernet0/5 port monitor VLAN1

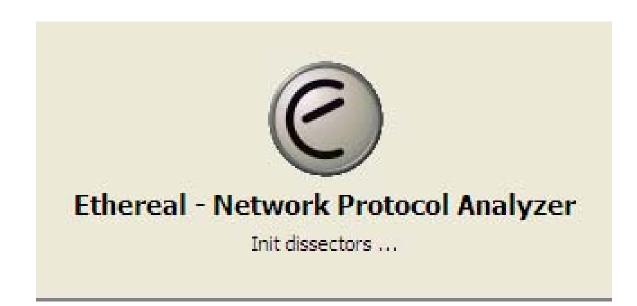
interface FastEthernet0/2

interface FastEthernet0/3 switchport access vlan 2

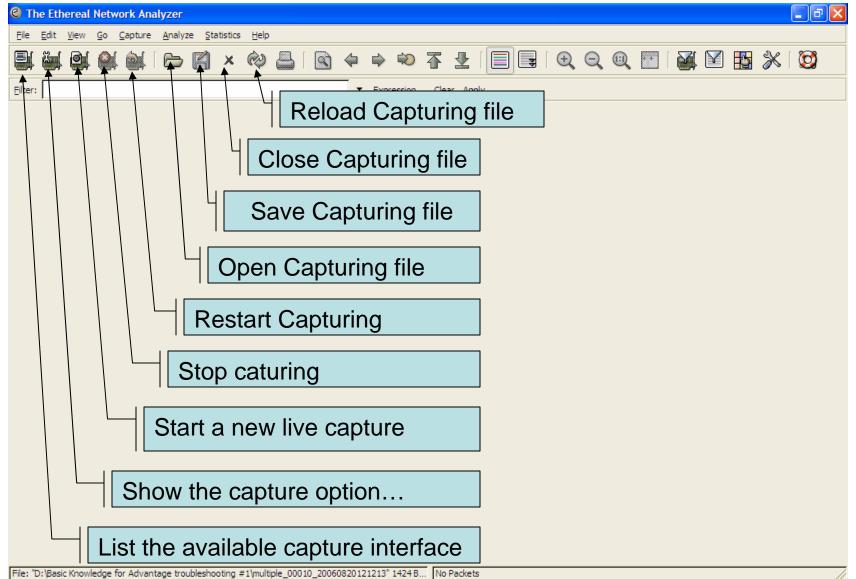
interface FastEthernet0/4 port monitor FastEthernet0/3 port monitor FastEthernet0/6 switchport access vlan 2

interface FastEthernet0/5

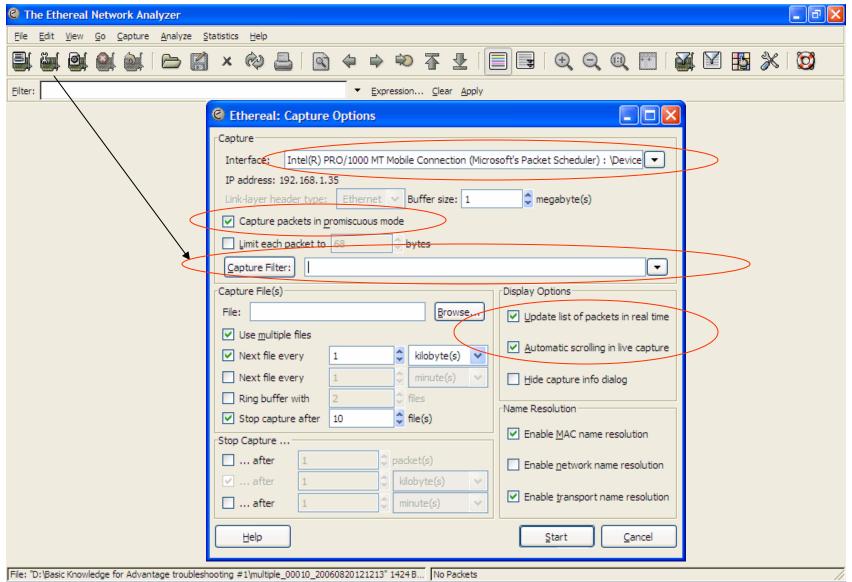
interface FastEthernet0/6 switchport access vlan 2


interface VLAN1

ip address 10.200.8.136 255.255.252.0 no ip directed-broadcast


no ip route-cache

Start Ethereal

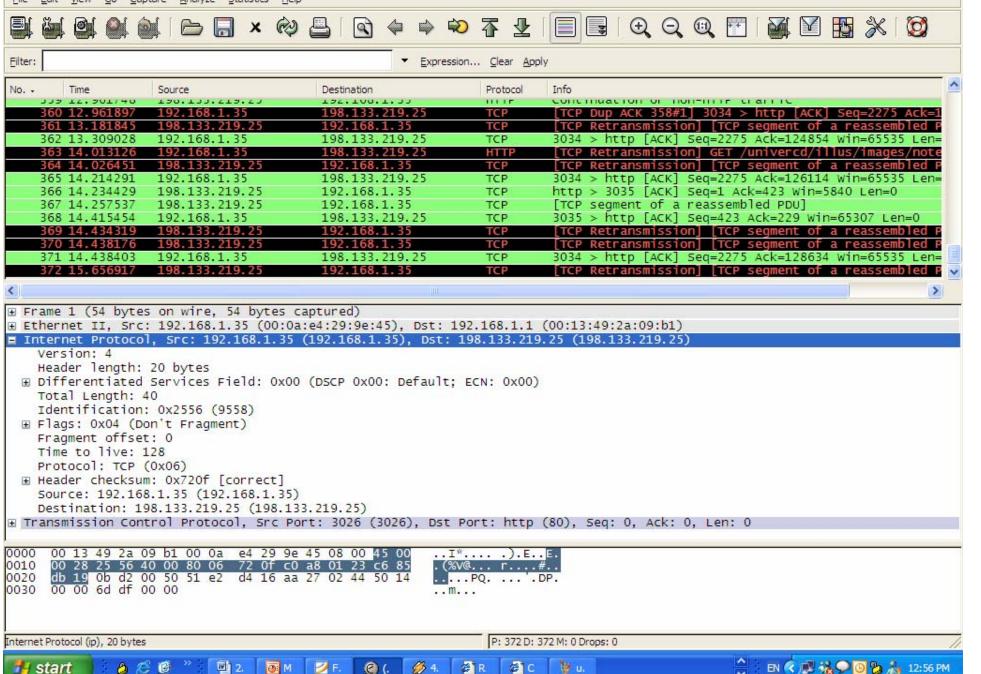

Capturing Live Network Data

List the Available Capture Interface

C The Ethereal Network Analyzer											
<u>Eile Edit View Go Capture Analyze Statistics Help</u>											
				0, 🖭 🌌		ð					
Eilter:	▼ Expression ⊆lear A	<u>I</u> pply									
	Ethereal: Capture Interfaces Description Generic dialup adapter Intel(R) PRO/1000 MT Mobile Connection (Microsoft's Packet Scheduler) Intel(R) PRO/Wireless 2200BG Network Connection (Microsoft's Packet Scheduler) NOC Extranet Access Adapter NOC Extranet Access Adapter (Microsoft's Packet Scheduler) Qlose	IP unknown 192.168.1.35 0.0.0.0 unknown 169.254.241.150	Packets Packets/s	Capture Prepare Capture Prepare Capture Prepare Capture Prepare Capture Prepare Capture Prepare	Details Details Details	>					

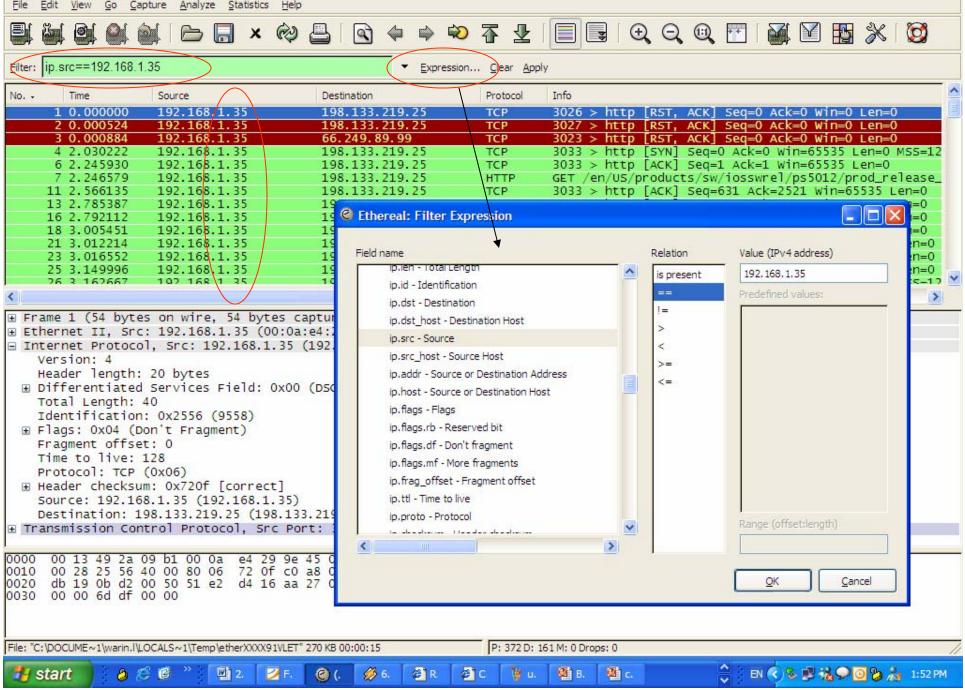
Show the Capture Option

Capture Filter


C Ethereal: Capture	Options								
Capture									
Interface: Intel(R) PRO/1000 MT Mobile Connection (Microsoft's Packet Scheduler) : \Device									
IP address: 192.168.1.35									
Link-layer header type: Ethernet 👽 Buffer size: 1 😂 megabyte(s)									
Capture packets in p	Capture packets in promiscuous mode								
	Limit each packet to 68 bytes								
Capture Filter: ip.sr	c==192.168.1.3	35	•						
Capture File(s)			Display Options						
File:		Browse	Update list of packets in real time						
Use <u>m</u> ultiple files									
Next file every		🗘 kilobyte(s) 🗸	 <u>A</u>utomatic scrolling in live capture 						
Next file every		🖕 minute(s) 🗸 🗸	Hide capture info dialog						
Ring buffer with	2	files	Name Resolution						
Stop capture after	10	🕽 file(s)							
Stop Capture			Enable MAC name resolution						
🔲 after 🛛 1	🗘 P	acket(s)	Enable network name resolution						
🗌 after 1	÷	kilobyte(s) 🛛 🗸							
🗌 after 🛛 1	÷	minute(s) 💉	Enable transport name resolution						
Help			Start Cancel						

Start a New Live Capture

🕝 (Untitled) - Ethereal


File Edit View Go Capture Analyze Statistics Help

🙆 (Untitled) - Ethereal

Edit View Go Capture Analyze Statistics Help File

Detail Protocol: BOOTP/DHCP

BOOTP

- Provides a means for downloading:
 - Static IP Address
 - Subnet mask
 - Default Router address
 - Boot server address and Boot file name
 - Option parameters
- Communicate on UDP Ports 67 (Server) and 68 (Client)

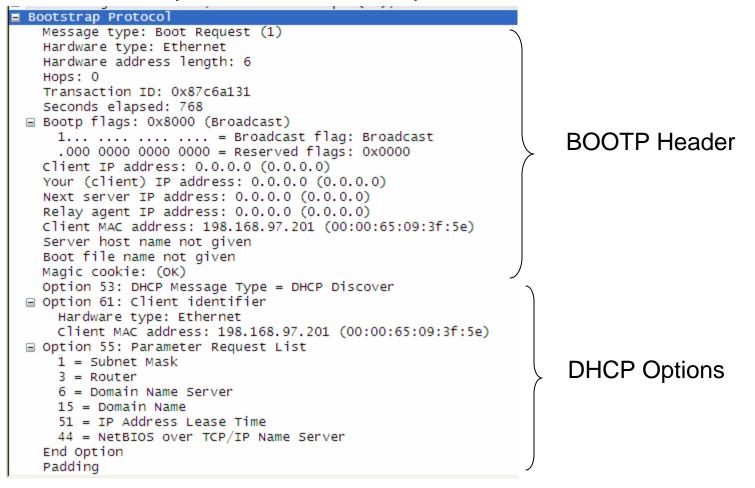
What is DHCP?

- An update version of BOOTP called the Dynamic Host Configuration Protocol
- A safe, reliable, and simple TCP/IP network configuration protocol
 - Conserves IP address by leasing them instead of assigning them permanently
 - Dynamically allocates reusable network address
 - Automatically provides minimal requirements of IP address, subnet mask, and default gateway

IP Address Assignment

- Automatic Allocation (static maps)
 - DHCP is preconfigured with MAC-IP address mapping
 - Devices always receive the same assigned address
 - Address are not shared
- Dynamic Allocation
 - Address are shared
 - Address is assigned for a specified period of time

T h @ i **A d m i n**


Dynamic Allocation Configuration

- Address ranges or "Scopes" are reserved on DHCP server for dynamic allocation
 - IP address is leased to DHCP client for a specified amount of time
 - DHCP Client must request lease renewal after a predefined period of time:
 - Renewal timer = 50% of lease time
 - Rebinding timer = 87.5% of lease time
 - Lease timer = 100% of lease time

BOOTP/DHCP Headers

- Client uses UDP port 68, Sever uses port 67

Thai**Admin**

Popular BOOTP/DHC Parameters

- Client IP configuration parameters
 - Subnet mask and broadcast address
 - Client Host name (may be different than domain name)
 - Internet Domain name
 - Default Ip Time-to-Live
 - Default Maximum transmission Unit (frame size)
 - Static Routers
- Client TCP parameters
 - TCP default TTL
 - TCP Keep-Alive Interval
 - Send TCP Keep-Alive Garbage Octet
- Lists of IP addresses for client to use
 - Domain Name Servers
 - Default Router

T h a i **A d m i n**

DHCP Messages

Finding DHCP server

- Discover:
- Offer: Server offer to Client
- Request: Client Request to Server
 - Server > Client
 - Server refuse client request
 - Client > Server
 - Client > Server
 - Client inform Server its parameter
- Inform:

• Release:

• Decline:

• Ack:

• Nack:

T h @ i **A d m i n**

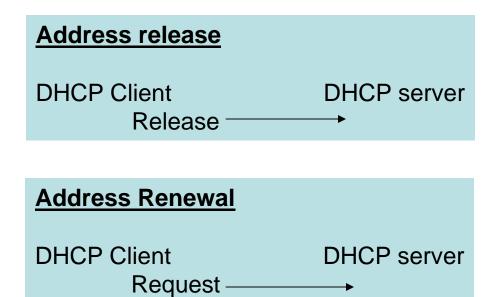
D.O.R.A Address Initialization DHCP Client DHCP Server

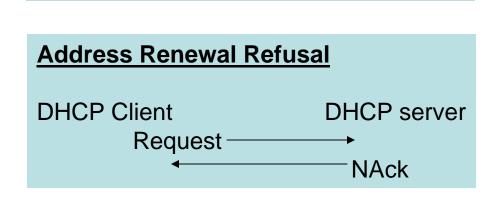
Discover ____

Broadcast to all, Indicates hardware address type, May offer an IP address and lease time

Offer

All servers unicast or broadcast to all, Offer an Available IP address and timing information

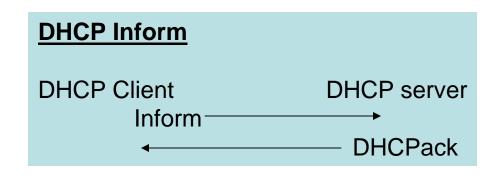

Request


Broadcast to all, Indicates the chosen server Address and preferred IP address

Ack

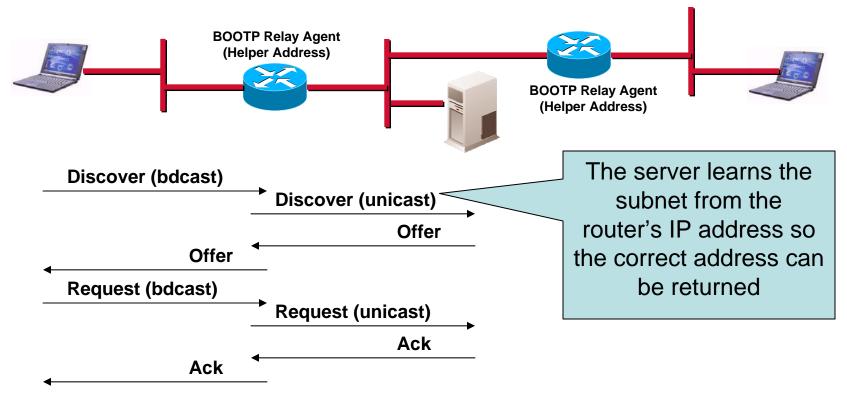
Chosen server commits the binding and broadcast to All, The Ack includes the IP address and other Configuration information. The remaining servers free The address.

DHCP Release and Renewal



Ack

DHCP Inform



- Client has an externally configured network address
- DHCP Inform message allows the client to request local configuration information
- Server responds with DHCPack containing appropriate parameters
- Server does not check the address against the least table

BOOTP Relay

- DHCP server cannot communicate with clients on the other side of a router
 - A BOOTP Relay Agent must be enabled on the router and it must be configured to forward the messages

DHCP Troubleshooting

- DHCP server thinks an address is expired
 - A client continues to use an address from cache that has now been leased to another client by the server
- Overlapping scopes with mulitple DHCP servers
 - The servers do not communicate to inform each other of their range of address
- The DHCP server ran out of address
- Duplicate IP address still occur with DHCP
 - Nothing stops a user from configuring a static OP address
 - Since Windows NT Sp2 allows the server to Ping an address to see if it is in use before it assigns it to a new host
- Use the Advanced tab > IP > UDP > BOOTP to filter in only BOOTP and DHCP frames

Demo-LAB

- DHCP Demo
- DHCP Troubleshooting
- DHCP Relay

Detail Protocol: IP v4

IP Header

MAC header I	P header <mark>Data</mark>	:::															
IP header:																	
00 01 02 03	04 05 06 07	08 09	10 11	12 13	3 14	15	16 1	7 18	19 20) 21	22 2	23 24	ł 25	26 2	7 28	8 29	30 31
<u>Version</u>	Version IHL TOS						Total length										
	<u>Identi</u>	<u>fication</u>					Flags Fragment offset										
T	TTL Protocol Header checksum																
Source IP address																	
Destination IP address																	
	Options and padding :::																

T h @ i **A d m i n**

IP Header (Cont.)

Version. 4 bits.

Specifies the format of the IP packet header.

Version	Description
0	Reserved.
1	
2	
3	
4	IP, Internet Protocol.
5	ST, ST Datagram Mode.
6	SIP, Simple Internet Protocol. SIPP, Simple Internet Protocol Plus. <u>IPv6, Internet Protocol</u> .
7	TP/IX, The Next Internet.
8	PIP, The P Internet Protocol.
9	TUBA
10	
-	
14	
15	reserved.

IP Header (Cont.)

IHL, Internet Header Length. 4 bits.

Specifies the length of the IP packet header in 32 bit words. The minimum value for a valid header is 5.

TOS, Type of Service. 8 bits.

Specifies the parameters for the type of service requested. The parameters may be utilized by networks to define the handling of the datagram during transport. The M bit was added to this field in <u>RFC 1349</u>.

00 01	02	03	04	05	06	07
Precede	D	Т	R	М	0	

Precedence. 3 bits.

Value	Description
0	Routine.
1	Priority.
2	Immediate.
3	Flash.
4	Flash override.
5	CRITIC/ECP.
6	Internetwork control.
7	Network control.

D. 1 bit. Minimize delay.

Value	Description
0	Normal delay.
1	Low delay.

T. 1 bit. Maximize throughput.

Value	Description
0	Normal throughput.
1	High throughput.

R. 1 bit. Maximize reliability.

Value	Description
0	Normal reliability.
1	High reliability.

M. 1 bit. Minimize monetary cost.

Value	Description
0	Normal monetary cost.
1	Minimize monetary cost.

IP Header (Cont.)

Total length. 16 bits. Contains the length of the datagram.

Identification. 16 bits.

Used to identify the fragments of one datagram from those of another. The originating protocol module of an internet datagram sets the identification field to a value that must be unique for that source-destination pair and protocol for the time the datagram will be active in the internet system. The originating protocol module of a complete datagram clears the *MF* bit to zero and the *Fragment Offset* field to zero.

T h @ i **A d m i n**

IP Header (Cont.)

Flags. 3 bits		
00 01 02 R DF MF		
	erved. 1 bit. be cleared to 0.	
	n't fragment. 1 bit. s the fragmentation of the datagram.	
Value	Description	
0	Fragment if necessary.	
1	Do not fragment.	
	ore fragments. 1 bit. es if the datagram contains additional	fragments.
Value	Description	
0	This is the last fragment.	
1	More fragments follow this fragment.	

T h @ i **A d m i n**

IP Header (Cont.)

Fragment Offset. 13 bits.

Used to direct the reassembly of a fragmented datagram.

TTL, Time to Live. 8 bits.

A timer field used to track the lifetime of the datagram. When the TTL field is decremented down to zero, the datagram is discarded.

Protocol. 8 bits.

This field specifies the next encapsulated protocol.

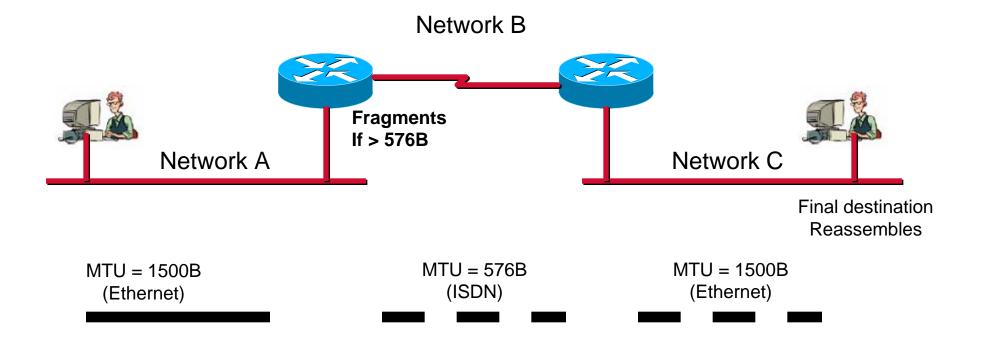
 HOPOPT, IPv6 Hop-by-Hop Option. ICMP, Internet Control Message Protocol. IGAP, IGMP for user Authentication Protocol. IGMP, Internet Group Management Protocol. RGMP, Router-port Group Management Protocol. GCP, Gateway to Gateway Protocol. 	/alue	Protocol
2 IGAP, IGMP for user Authentication Protocol. IGMP, Internet Group Management Protocol. RGMP, Router-port Group Management Protocol.	0 H	HOPOPT, IPv6 Hop-by-Hop Option.
2 <u>IGMP</u> , Internet Group Management Protocol. <u>RGMP</u> , Router-port Group Management Protocol.	1 <u>I</u> (ICMP, Internet Control Message Protocol.
3 CCD. Cateway to Cateway Protocol	2 <u>I</u>	IGMP, Internet Group Management Protocol.
	3 <u>G</u>	GGP, Gateway to Gateway Protocol.
4 IP in IP encapsulation.	4 <u>I</u>	IP in IP encapsulation.

IP Header (Cont.)

Header checksum. 16 bits. A 16 bit one's complement checksum of the IP header and IP options.

Source IP address. 32 bits. IP address of the sender.

Destination IP address. 32 bits. IP address of the intended receiver.


Options. Variable length.

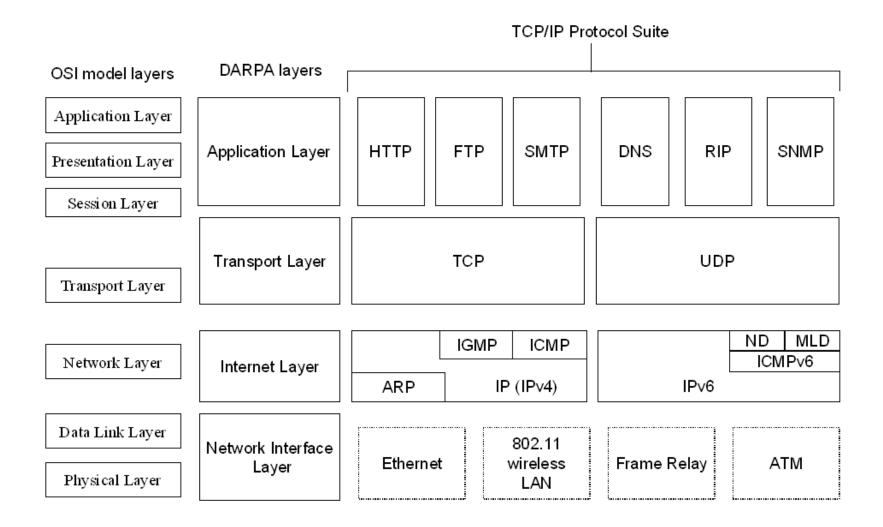
00 01 02	03 04 05 06 07
C Class	Option

Padding. Variable length. Used as a filler to guarantee that the data starts on a 32 bit boundary.

IP Fragmentation and Reassembly

MTU = Maximum Transfer Unit

Demo-LAB

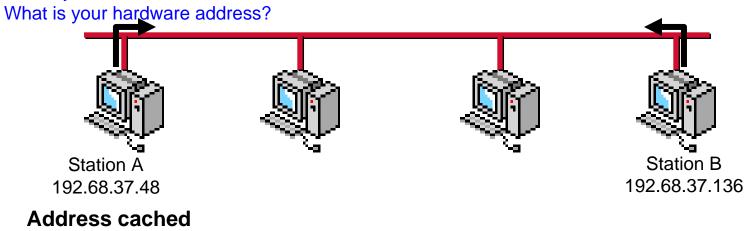

- IP Header Demo
- Missing Fragmentation

Detail Protocol: ARP

ARP/RARP Layer

T h a i **A d m i n**

How ARP Works

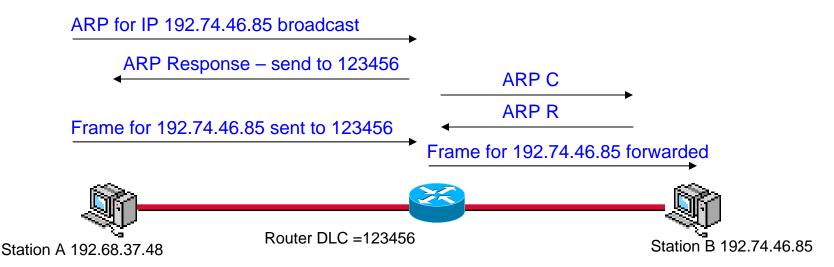

 Each station maintains as Address Resolution Cache of recently acquired physical/internet address

Station A checks its ARP cache to see if it has Station B's hardware address. If it isn't in caches, it uses its address mask to determine if Station B is on its subnet. If yes, it

uses ARP to get it. Broadcast:

Station B, where are you? I know your IP address; What is your hardware address?

Point to Point: My hardware address is xxxxx


ARP and Network Devices

- ARP frames are broadcast
- Hubs, switches and bridges forward ARP frames so everyone on the subnet hears them
 - If the device is active, it responds directly to the source
- Routers do not forward ARP frames

Proxy ARP

- Station A needs to communicate to Station B but does not have a default gateway (or use it's own IP address for the gateway). How can it learn an appropriate DLC address? Proxy ARP!
- Station A needs a DLC address to map to the known IP address for B. A ARPs on its own segment and the router responds with its DLC address (knowing that the destination network is accessible via its other port)
- When A sends its request to B, it will then use B's IP address and the router's DLC address. The router will then route the packet to B

T h @ i **A d m i n**

ARP/RARP Frame Format

0 4	8	12 	16 	20 	24 	28 	32 		
Hard	dware Typ	e		Pr	otocol Ty	pe			
Hardware addressNetwork ProtocollengthAddress length				Ор	eration co	ode			
Sender Hardware Address									
Sender H	Sender Hardware Address				vork Proto	ocol Addre	SS		
Sender Netwo	Sender Network Protocol Address				lardware	Address			
Target Hardware Address									
	Target Network Protocol Address								

T h a i **A d m i n**

ARP Field Descriptions

- Hardware Type (2 bytes). 1=ethernet.
- Protocol Type(2 bytes). 0800H (hex) = IP address.
- Hardware Address Length(1 byte). 6
- Network Protocol Address Length (1 byte). 4
- Operation Code. 1 = ARP request, 2=ARP reply, 3=RARP request, 4=RARP reply.
- The sender's ethernet address (6 bytes)
- The sender's IP address (4 bytes)
- The recipient's ethernet address (6 bytes)
- The recipient's IP address (4 bytes)

T h a i **A d m i n**

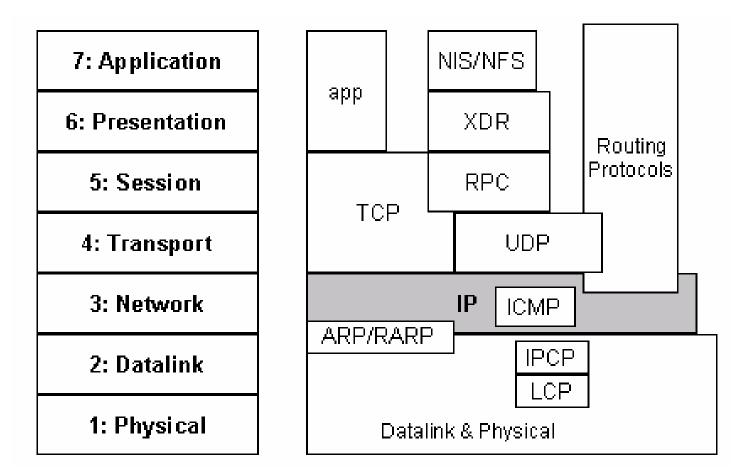
Other ARPs

- Reverse ARP
 - Locates the IP address for a hardware address
 - Used for diskless workstations
- Inverse ARP
 - A device sends an ARP after obtaining an address through DHCP
 - Used Mainly in Frame Relay and ATM
- Gratuitous ARP two types
 - A device sends an ARP after obtaining an address through DHCP to check it's unique
 - Prevents conflicts with hard-coded devices
 - A device sends an ARP broadcast for its own address to update others on the network
 - Receivers update their ARP cache
- UnARP
 - ARP response frame with zeros in the hardware address fields
 - Receivers remove entry from cache

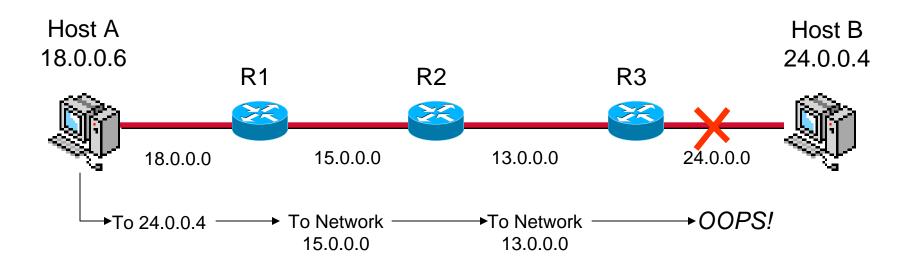
ARP troubleshooting Tips

- Filter on ARP protocol
- Look for ARP command with no replies
 - Many upper layer protocols ARP to get the address first
 - Upper layer problems may be due to ARP failures
 - Ensure proxy ARP is enabled on the router
 - Check for signs of default gateway configuration problems
- Filter on individual address to check intervals of ARPs to find aging table and gratuitous ARP problems
 - This is important on routers
- Look for ARP sweeps
 - A series of ARPs with incrementing IP address indicates an automated test program is running or a hacker is trying to break in
 - Confirm the source is authorized

Demo-LAB


- Complete & Fail ARP
- Reverse ARP
- Gratuitous ARP

Detail Protocol: ICMP



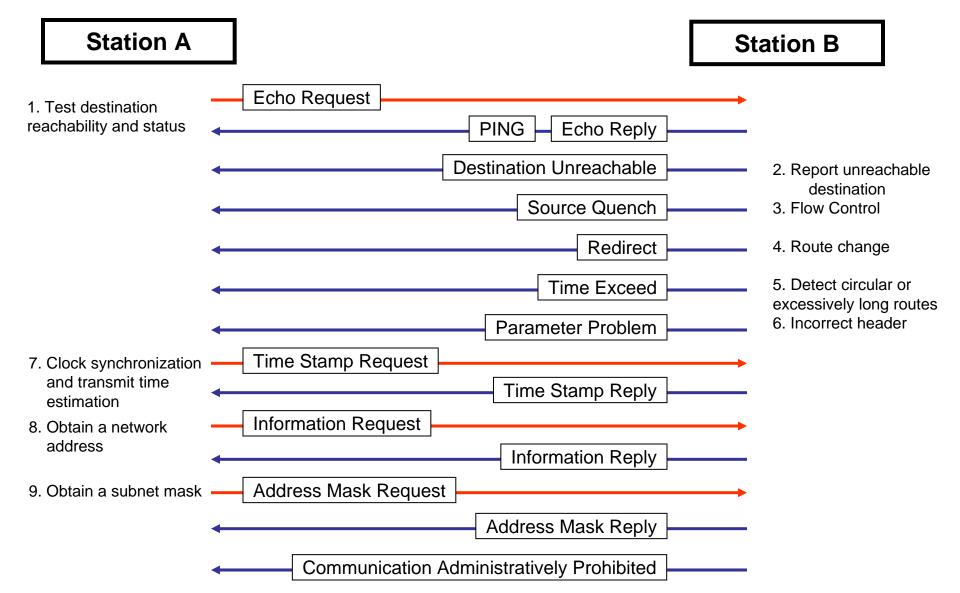
ICMP Layer

Thai**Admin**

Reporting Trouble with IP Routing

Q: How can you tell Host A the bad news? A: ICMP!

ICMP net unreachable


ICMP Message Format

type (8 bits)	code (8 bits)	checksum (16 bits)	↑ 4 bytes ↓			
	data (variable length)					

ICMP message types				
type	description	type	description	
0	echo reply	11	time exceeded	
3	destination unreachable	12	parameter problem	
4	source quench	13	timestamp request	
5	redirect	14	timestamp reply	
8	echo request	17	address mask request	
9	router advertisement	18	address mask reply	
10	router solicitation			

T h @ i **A d m i n**

ICMP Message

Echo Request/Reply Message

Field Size (Bits)	Field Name	Field Description
8	Туре	Echo Request = "8", Echo Reply = "0"
8	Code	"0"
16	Checksum	16-Bits One's Complement of the Oned's Complement sum of the ICMP message
16	Identifier	Used by client to match request to replies
16	Sequence Number	Used by client to match request to replies
Variable	Optional Data	Data to be returned to the client. An Echo Reply must return the same data as was received in the request

Client sends a "Ping" Command

ICMP Echo Request Type = 8

ICMP Echo Reply Type = 0

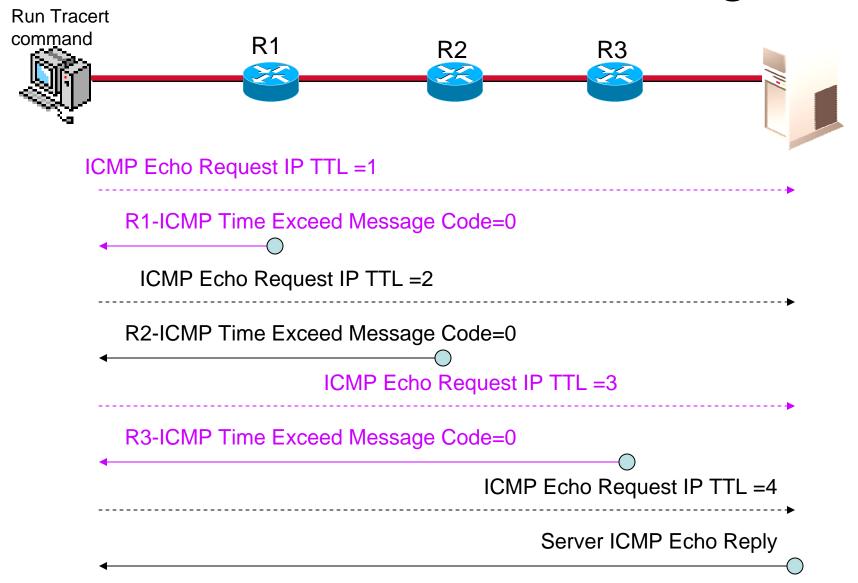
Destination Unreachable Message

Field Size (Bits)	Field Name	Field Description
8	Туре	3
8	Code	 0 = Net unreachable 1 = Host unreachable 2 = Protocol unreachable 3 = Port unreachable 4 = Fragmentation needed and "Don't Fragment "Bit set 5 = Source Route Failed 6 = Destination network unknown 7 = destination host unknown 8 = source host not isolated 9 = Communication with destination network administratively prohibited 10 = same but host prohibited 11 = network unreachable for type of service
		12 = Host unreachable for type of service
16	Checksum	16-Bits One's Complement of the Oned's Complement sum of the ICMP message
32	Unused	unused
Variable	IP Header + first 64 bits of Datagram	Used by the host to match the message to the appropriate process

Thai**Admin**

Destination Unreachable Message

	Massage	Device	Layer
1.	Destination Network Unreachable	Router	Network
2.	Destination host Unreachable	Router	Network
3.	Protocol Unreachable	Host	Transport
4.	Port Unreachable	Host	Transport
5.	Fragment needed, don't fragment bit set	Router	Network
6.	Source route failed	Router	Network
9.	Communication administratively prohibited	Router	Network

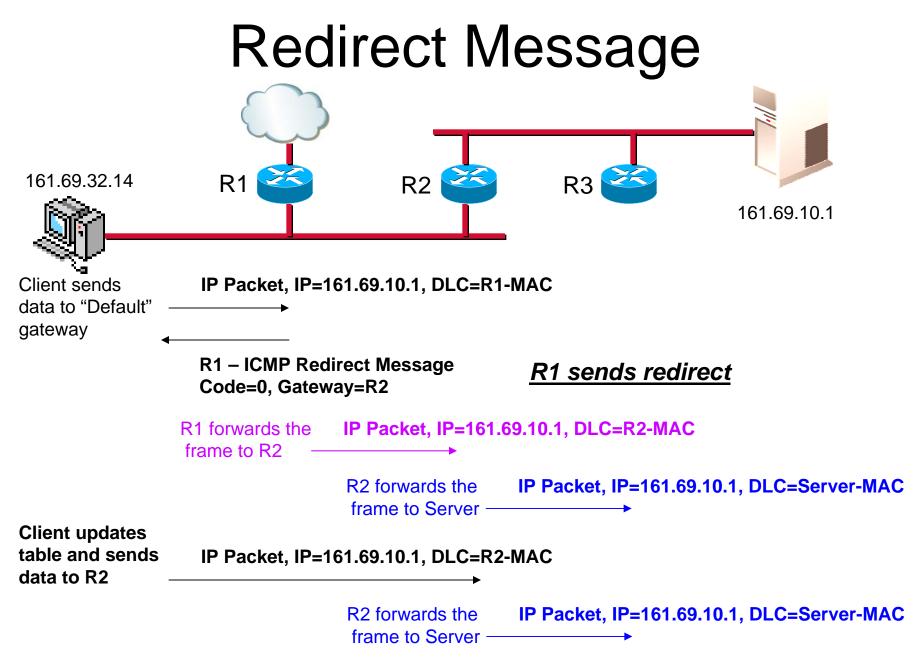


Time Exceeded Message

Field Size (Bits)	Field Name	Field Description
8	Туре	11
8	Code	0 = time to Live (TTL) Exceed in Transit 1 = Fragment Reassembly Time Exceeded
16	Checksum	16-Bits One's Complement of the Oned's Complement sum of the ICMP message
32	Unused	Not Used
Variable	IP Header + first 64 bits of Datagram	Used by the host to match the message to the appropriate process

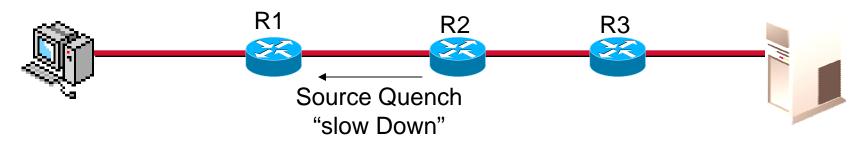
Time Exceeded Message

Trace Route - Demo


TRACERT

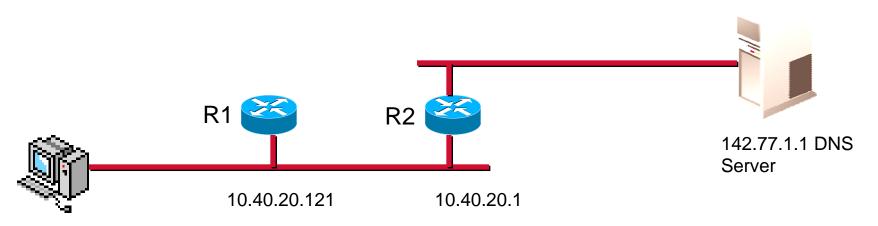
🚥 Command Prompt - tracert t	aiadmin.org	- 🗆 🗙
C:\Documents and Settings	warin.l>trace	rt thaiadmin.org
Tracing route to thaiadmi over a maximum of 30 hops		.271
2 15 ms 15 ms 3 16 ms 20 ms	(1 ms 192.168 7 ms 210.245 8 ms 210.245	.0.35 .0.33
5 250 ms 238 ms 2 5.5]		core1.hk2-hongkong.teleglobe.net [216.6.9
5.130]		core1.kth-hongkong.teleglobe.net [216.6.9 core1.laa-losangeles.teleglobe.net [207.4 <mark>_</mark>
8 414 ms 412 ms 4 193.98]		bb3.laa-losangeles.teleglobe.net [207.45.
85.18]		bb3.laa-losangeles.teleglobe.net [209.58. 253.214
		253.147

Redirect Message


Field Size (Bits)	Field Name	Field Description
8	Туре	5
8	Code	 0 = Redirect Datagrams for the Network 1 = Redirect Datagrams for the Host 2 = Redirect Datagrams for the Type of service and the Network 3 = Redirect Datagrams for the Type of service and the Host
16	Checksum	16-Bits One's Complement of the Oned's Complement sum of the ICMP message
32	Gateway Internet Address	Address of the gateway to which traffic for the network specified on the internet destination network field of the original detagram should be sent
Variable	IP Header + first 64 bits of Datagram	Used by the host to match the message to the appropriate process

Other ICMP Message

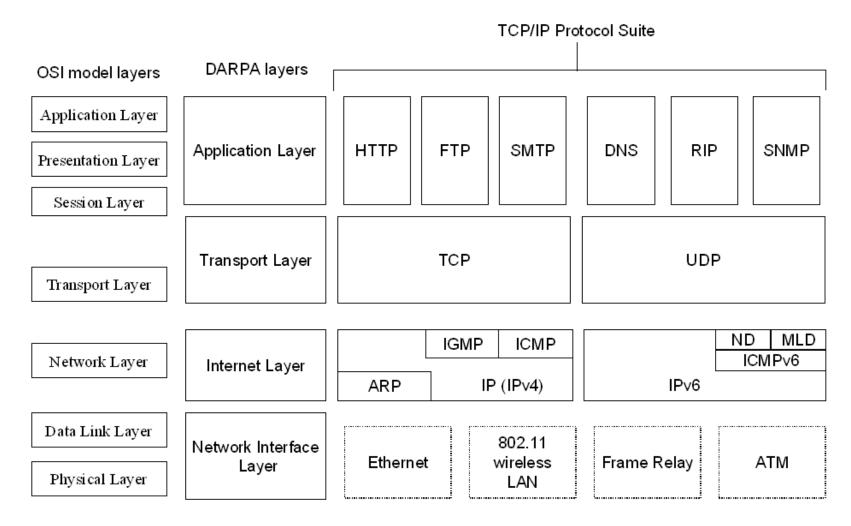
• 0 = Source Quench



- Time stamps
 - 13 = Timestamp Request includes originating time
 - 14 = Timestamp Reply includes receive and transmit timer values
- Address masks
 - 17 = Address Mask request
 - 18 = Address mask Reply includes networks mask

Demo Lab

• ICMP Redirect



10.40.20.115

Detail Protocol: TCP

ThatAdmin Transmission Control Protocol (TCP)

What Does TCP Do?

- Reliable Internetwork Packet Delivery
- Efficient Flow Control
- Multiplexing (Conversation and Connections)
- Error Control (Checksum)

TCP Header

16	-bit Source	Por	t Ni	umb	ber			16-bit Source Destination Port
				32	-bit	Se	que	nce <u>Nember</u>
			3	2 - b	oit A	kckr	now	ledge <u>Nember</u>
Header Length	6-Bit Reserved	URG	ACK	PUSH	RESET	SYN	FIN	16-bit Windows Size
	16-bit TCP	Che	cks	um				16-bit Urgent Pointer
						тс	P C	ption
							Da	ta

TCP Fields

Bits	Name	Function
16	Source Port	An address identifying a process in the sending Host (ULP)
16	Destination Port	An address identifying a process in the destination host
32	SEQ Number	The number of the first octet of data in the segment being sent
32	ACK Number	The next sequence number the sender expects to receive
4	Data Offset	The number of 32 bit word in the TCP Header (5-15) The offset where the TCP data begins in the frame
6	Reserved	Reserved, must be 0

TCP Fields

	Bits	Name	Function
F	1	URG	Urgent Flag: There is information in the urgent field
	1	ACK	ACK Field is relevant: this is an acknowledgement frame
	1	PSH	Receiving TCP should immediately deliver segment to receiving ULP
A	1	RST	Reset connection due to delayed duplicates, host crashes, etc
G	1	SYN	Connection request
S	1	FIN	Connection termination: sender won't transmit any more data
	16	Window	The number of bytes that the sender is willing to accept
	16	Checksum	16-Bits One's Complement of the One's Complement sum of all 16-bit words in the header, Pseudo header and text
	16	Urgent (Offset)	A position offset from the sequence number which points to the last byte of urgent data. Only interpreted when URG Flag set
	VAR	Options	Reserved for miscellaneous things, such as maximum segment size

What is a Port?

Port is the place that the server application is waiting (Listen) client to connect to

Common UDP/TCP Port Number

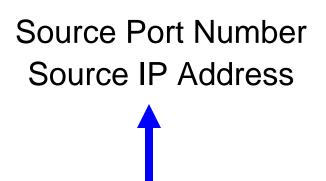
Port Number	Description		
1	TCP Port Service Multiplexer (TCPMUX)		
5	Remote Job Entry (RJE)		
7	ECHO		
18	Message Send Protocol (MSP)		
20	FTP Data		
21	FTP Control		
22	<u>SSH</u> Remote Login Protocol		
23	<u>Telnet</u>		
25	Simple Mail Transfer Protocol (SMTP)		
29	MSG ICP		
37	Time		
42	Host Name Server (Nameserv)		
43	WhoIs		
49	Login Host Protocol (Login)		
53	Domain Name System (DNS)		
69	<u>Trivial File Transfer Protocol</u> (TFTP)		
70	Gopher Services		
79	Finger		
80	HTTP		

Images Video^{New!} News Maps more »

Search Advanced Ser

Are Ports & Sockets the Same?

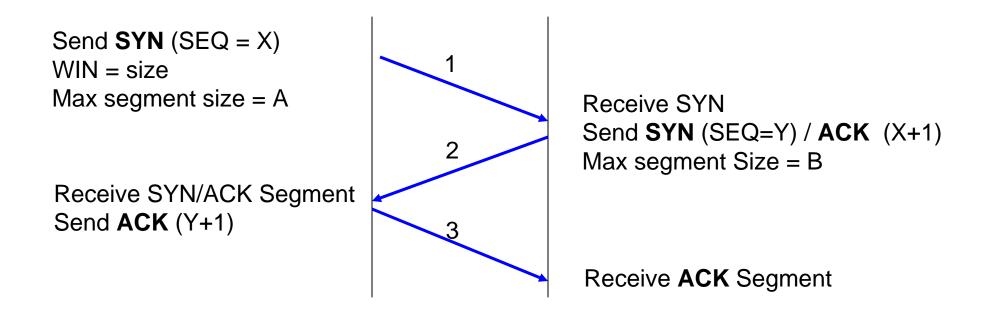
Port *¥* Sockets


- A **Port** is an address used by the Transport layer to talk to an application
- A **Socket** is the combination of the port number **and** IP address creating a unique address for an application in the network

Source & Destination Port

- Most implementation:
 - Client will choose random port from internal pool as source port number
 - Destination has to be well known port number
- Example
 - User A send packet to Web server (port 80)
 - Step1: Client random choose source port from its internal pool (1024-65535). >> let get 54362 for example.
 - Step2: Client compose packet send to web server
 - Source IP: A's IP address
 - Source TCP port number is 54362
 - Destination IP: Web server's IP address
 - Destination TCP port number is 80 (well known port number)

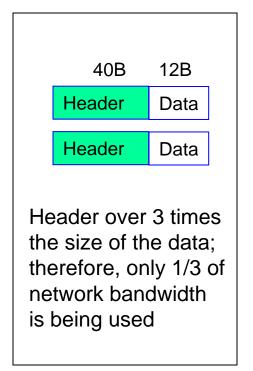
What is a Connection?

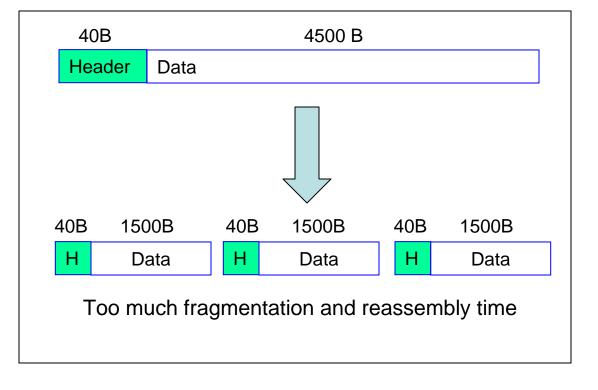

Destination IP Address Destination Port Number

- Socket of one application is associated with the socket of another application process, creating a socket pair used to refer to the connection
- All data transfers are tracked through the socket pairing
- The socket paring is destroyed when a timeout expires after the connection is released

Connection Establishment

The 3 Way Handshake

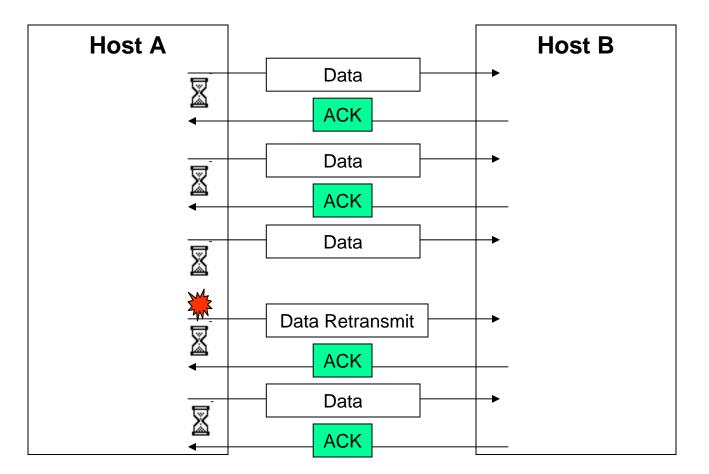




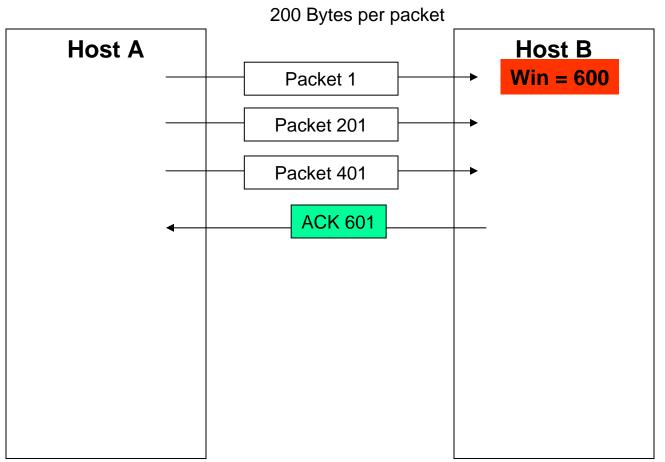
The Effect of Segment size on Performance

Small Segments

Large Segments



Reliable Delivery mechanisms


• Positive Acknowledge with Retransmission (PAR)

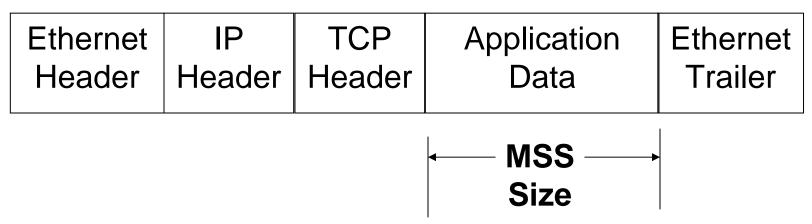
Reliable Delivery Mechanisms

• Sliding Window

Efficient Flow Control Sliding Window

- Simple PAR mechanisms waste bandwidth: Sender must receive ACK prior to sending more data
- Sliding window protocols allow multiple transmission without an ACK
- Sliding window provide flow control
- Each station has a send and receive window
 - The size of my send window is the size of your receive window
 - The window indicates the buffer space available for that application at that moment
 - Transmitted data is held in the buffer until the ACK is received
 - Only unacknowledged data is retransmitted

MTU


• MTU - Maximum Transfer Unit

Ethernet	IP	TCP	Application	Ethernet
Header	Header	Header	Data	Trailer

MTU Size			
Network	MTU (bytes)		
Hyperchannel	65535		
16 Mbits/sec token ring (IBM)	17914		
4 Mbits/sec token ring (IEEE 802.5)	4464		
FDDI	4352		
Ethernet	1500		
EEE 802.3/802.2	1492		
X.25	576		
Point-to-Point (low delay)	296		

MSS

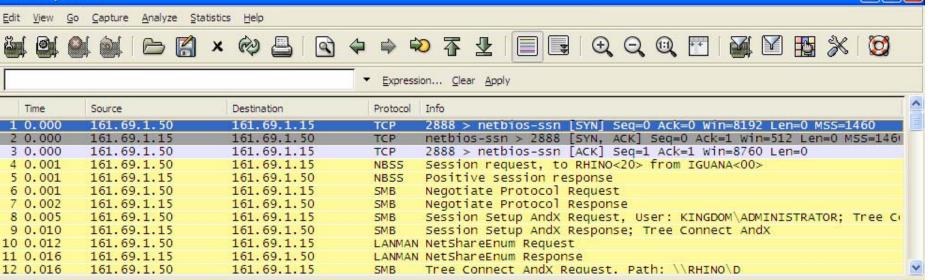
 MSS – maximum segment Size is the largest "chunk" of data that TCP will send to the other end

Ethernet:

MSS = MTU(1500) - IP header(20) - TCP header(20) = 1460

Note: Each OS can announce MSS with different value

Window Size


- Window Size is buffer size for packet receiving
- Receiver will announce it's Windows size (Buffer size) to the sender
- Sender can send data up to window size which announced by Receiver
- Sender has to wait until Receiver clear buffer and announce window size again then it can continue send data

Winsize4.cap - Ethereal

Eilter:

No. -

File Edit View Go Capture Analyze Statistics Help

_ 7

Ethernet II, Src: NetworkG_10:22:1c (00:00:65:10:22:1c), Dst: Xircom_ea:9f:68 (00:10:a4:ea:9f:68)

Internet Protocol, Src: 161.69.1.50 (161.69.1.50), Dst: 161.69.1.15 (161.69.1.15)

Transmission Control Protocol, Src Port: 2888 (2888), Dst Port: netbios-ssn (139), Seq: 0, Ack: 0, Len: 0

Source port: 2888 (2888) Destination port: netbios-ssn (139) Sequence number: 0 (relative sequence number)

Header length: 28 bytes Window size: 8192 Checksum: 0xa455 [correct] Options: (8 bytes) Maximum segment size: 1460 bytes NOP

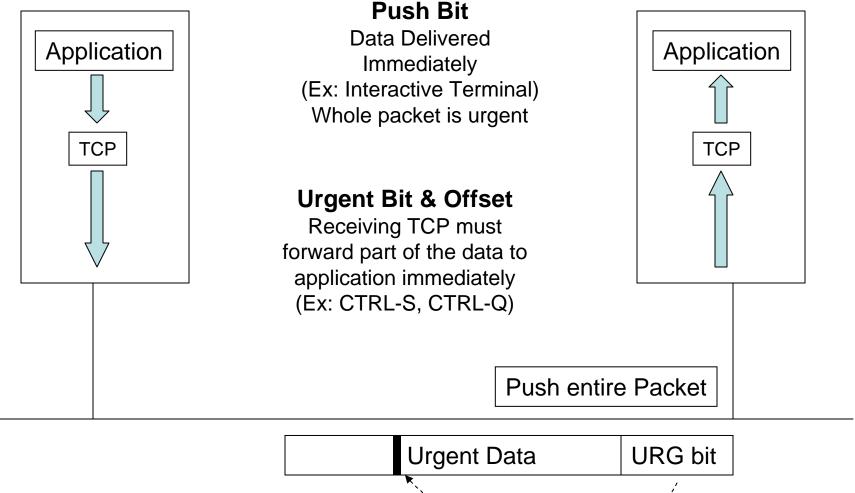
NOP

SACK permitted

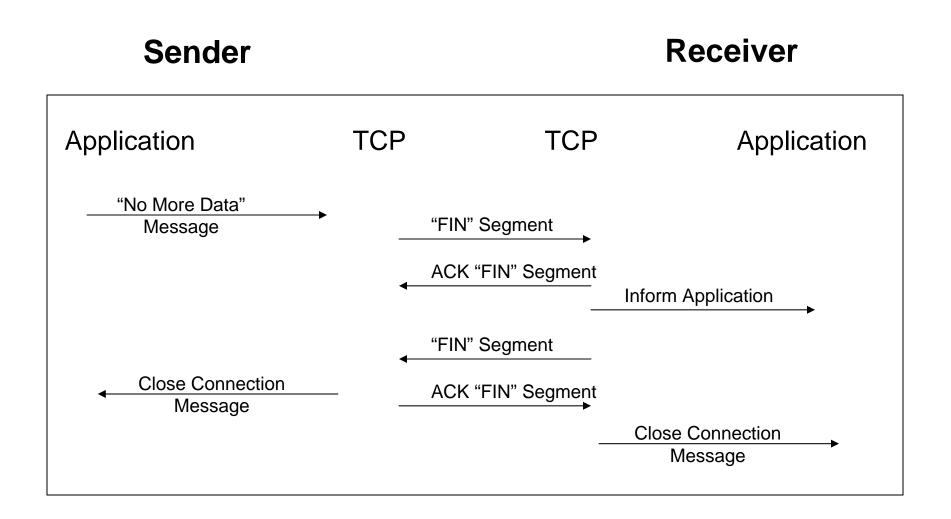
00 10 a4 ea 9f 68 00 00 65 10 22 1c 08 00 45 00h.. e. "....E. 0000 0010 00 30 2e 24 40 00 80 06 87 d8 a1 45 01 32 a1 45 .0.\$@... ...E.2.E 0020 01 0f 0b 48 00 8b 08 c5 65 66 00 00 00 00 70 02H.... ef....p. 0030 20 00 a4 55 00 00 02 04 05 b4 01 01 04 02 ..U....

File: "D:\Basic Kno	wledge for Advantage tr	oubleshootin	g #1\sniffer	\303gui\wins	size4.cap [*] 7:	394 KB 00:3.	P: 1223	4D: 12234N	4: 0					1
🐉 start	000°	🔏 w.	🔐 Y	@ S	@L	, ₽ v	🔗 s	😂 I	<i>Ø</i> 9	D	@ C	(2) 3	1	5:46 PM
	😂 🖸 🖬	<u>о</u> м.,	@ C	@ C	@ C	@ C	@ T	🕲 н	@ C	💋 F.,	© D	@ w	EN C	Sunday 50 Sunday

Example – Sliding Window


ime	192.42.252.20	192.42.252.1	192.42.252.3	192.42.252.255	Comment
1.592	(2918)	P			2916 > ftp [ACK] Seq=112 Ack=361 Win=4096 Len=0
1.594	(2918) TC	P (20)	1		[TCP Window Update] 2918 > ftp-data [ACK] Seq=1 Ack=4097 Win=4096 Len=0
1.598	(2918) FTP-D	ATA (20)	1		FTP Data: 1024 bytes
1.601	(2918) FTP-D				FTP Data: 1024 bytes
1.603	(2918) FTP-D	ATA (20)			FTP Data: 1024 bytes
1,605	(2918) FTP-D				[TCP Window Full] FTP Data: 1024 bytes
1.607	(2918)	P			2918 > ftp-data [ACK] Seq=1 Ack=8193 Win=4096 Len=0
1.708	(2918) FTP-D	ATA			FTP Data: 1024 bytes
1.711	(2918) FTP-D	ATA (20)			FTP Data: 1024 bytes
1.713	(2918) FTP-D				FTP Data: 1024 bytes
1.715	FTP-D	ATA			[TCP Window Full] FTP Data: 1024 bytes
1,717	(2918) TC	P (20)			2918 > ftp-data [ACK] Seq=1 Ack=12289 Win=4098 Len=0
1.770	(2918) FTP-D	ATA			FTP Data: 1024 bytes
1.773	(2918) FTP-D	ATA			FTP Data: 1024 bytes
1.775	(2918) FTP-D	ATA (20)			FTP Data: 1024 bytes
1.776	(2918) FTP-D				[TCP Window Full] FTP Data: 1024 bytes
1.778	TC International	P	1		[TCP ZeroWindow] 2918 > ftp-data [ACK] Seq=1 Ack=16385 Win=0 Len=0

When data must be delivered right away


Receiver

Sender

Closing TCP Connections

Resetting a TCP Connection

Demo Lab

• Sliding window